Sains Malaysiana 54(9)(2025): 2301-2313
http://doi.org/10.17576/jsm-2025-5409-16
A Novel Variant
of Weighted Quadratic Mean Iterative Methods for Fredholm Integro-Differential
Equations
(Varian Novel Kaedah Lelaran Min Kuadratik Berwajaran untuk Persamaan Integro-Differential
Fredholm)
NG WEI LI1 , ELAYARAJA ARUCHUNAN2,* & ZAILAN SIRI1
1Institute of Mathematical Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Decision Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
Received: 24
February 2025/Accepted: 10 July 2025
Abstract
Integro-differential equations are critical for modelling
real-world phenomena in physics, engineering, and biology. This paper
introduces a Quadratic Mean iterative method to solve dense linear systems
derived from the discretization of second- and fourth-order Fredholm integro-differential equations (FIDEs). The solution of the
FIDEs is approximated using finite difference, composite trapezoidal, and
composite Simpson’s 1/3 and 3/8 schemes. The quadratic mean iterative method then solves the discretized system with different mesh sizes.
As the resulting systems are large, a complexity reduction approach is
implemented on the quadratic mean method to develop the half-sweep quadratic
mean iterative method. The newly proposed iterative method includes a novel
theorem, comprehensive proofs, and a detailed convergence analysis. The
numerical results indicate that the quadratic mean method significantly
outperforms the Gauss-Seidel iterative method in terms of efficiency, making it
a promising solution for FIDEs.
Keywords:
Composite Simpson’s rules; composite trapezoidal; finite difference; Fredholm integro-differential equations; half-sweep iteration;
quadratic mean
Abstrak
Persamaan pembezaan-kamiran adalah penting untuk memodelkan fenomena dunia sebenar dalam fizik, kejuruteraan dan biologi. Kertas ini memperkenalkan kaedah lelaran Purata Kuadratik untuk menyelesaikan sistem linear tumpat yang diperoleh daripada membahagikan persamaan integro-pembezaan Fredholm tertib kedua dan keempat (FIDEs) kepada bahagian kecil. Penyelesaian FIDEs dianggarkan menggunakan perbezaan terhingga, trapezoid komposit dan skema 1/3 dan 3/8 komposit Simpson. Kemudian, kaedah lelaran purata kuadratik digunakan untuk menyelesaikan persamaan anggaran dengan saiz mesh yang berbeza. Memandangkan sistem yang akan diselesaikan adalah besar, pendekatan pengurangan kerumitan dilaksanakan pada kaedah purata kuadratik untuk membentuk kaedah lelaran purata kuadratik separuh sapuan. Kaedah lelaran yang baharu dicadangkan termasuk teorem novel, bukti komprehensif, dan analisis penumpuan terperinci. Keputusan berangka menunjukkan bahawa kaedah purata kuadratik dengan ketara mengatasi kaedah lelaran Gauss-Seidel dari segi kecekapan, menjadikannya penyelesaian terbaik untuk FIDEs.
Kata kunci: Beza terhingga; Fredholm; lelaran separuh sapuan; min kuadratik; Peraturan Simpson; persamaan pembezaan-kamiran; trapezoid komposit
REFERENCES
Aihara, K., Ozaki, K. & Mukunoki, D. 2024. Mixed-precision conjugate gradient
algorithm using the groupwise update strategy. Japan J. Indust.
Appl. Math. 41: 837-855. https://doi.org/10.1007/s13160-024-00644-8
Aruchunan, E. & Sulaiman, J. 2012. Comparison of
closed repeated Newton-Cotes quadrature schemes with half-sweep iteration
concept in solving linear Fredholm integro-differential
equations. International Journal of Science and Engineering Investigations 1(9): 90-96.
Aruchunan, E., Muthuvalu, M.S., Siri, Z., Ashok
Kumar, S.S., Sulaiman, J., Chew, J.V.L. & Mahajar Ali, M.K. 2022. Examination of half-sweep closed
Newton–Cotes quadrature schemes in solving dense system. In Towards
Intelligent Systems Modeling and Simulation. Studies
in Systems, Decision and Control, edited by Abdul Karim, S.A. & Shafie,
A. vol 383. Springer, Cham. https://doi.org/10.1007/978-3-030-79606-8_26
Aruchunan, E., Wu, Y., Wiwatanapataphee,
B. & Jitsangiam, P. 2015. A new variant of
arithmetic mean iterative method for fourth order integro-differential equations solution. 3rd
International Conference on Artificial Intelligence, Modelling and Simulation
(AIMS), Kota Kinabalu, Malaysia. pp. 82-87. doi:
10.1109/AIMS.2015.24
Aruchunan, E., Muthuvalu,
M.S., Sulaiman, J., Koh, W.S. & Akhir, K.M. 2014. An iterative solution for second order linear Fredholm integro-differential equations. Malaysian Journal
of Mathematical Sciences 8(2): 157-170.
Benzi, M. & Dayar,
T. 1995. The arithmetic mean method for finding the stationary vector of Markov
chains. International Journal of Parallel, Emergent and Distributed Systems 6(1): 25-37.
Cai, F., Xiao, J. & Xiang, Z.H. 2010.
Block SOR two-stage iterative methods for solution of symmetric positive
definite linear systems. Proceedings of the 3rd International Conference on
Advanced Computer Theory and Engineering, August 20-22, Chengdu, China. pp.
378-382.
Connolly, C.I., Burns, J.B. & Weiss, R.
1990. Path planning using Laplace’s equation. Proceedings of the IEEE
International Conference on Robotics and Automation. pp. 2102-2106.
Filiz, A. 2000. Numerical solution of some
Volterra integral equations. PhD Thesis, University of Manchester.
Jin, S., Ming, Z., George, E.K. &
Zhenya, Y. 2024. Two-stage initial-value iterative physics-informed neural
networks for simulating solitary waves of nonlinear wave equations. Journal
of Computational Physics 505: 112917.
https://doi.org/10.1016/j.jcp.2024.112917
Katuri, S. & Maroju,
P. 2025. A new approach for solving fuzzy non-linear equations using higher
order iterative method. Scientific Report 15: 12972.
https://doi.org/10.1038/s41598-025-97612-0
Muthuvalu, M.S. &
Sulaiman, J. 2011. Half-Sweep
Arithmetic Mean method with composite trapezoidal scheme for solving linear
Fredholm integral equations. Appl. Math. Comput. 217(12): 5442-5448.
Ortega, J.M. 1973. Numerical analysis, a
second course. Mathematics of Computation 27(123): 669.
https://doi.org/10.2307/2005671
Rathinasamy, A. & Balachandran, K.
2008. Mean-square stability of Milstein method for linear hybrid stochastic
delay integro-differential equations. Nonlinear
Analysis: Hybrid Systems 2(4): 1256-1263.
Ruggiero, V. & Galligani, E. 1990. An
iterative method for large sparse systems on a vector computer. Computers
and Mathematics with Applications 20: 25-28.
Sahimi, M.S., Ahmad, A.
& Bakar, A.A. 1993. The
Iterative Alternating Decomposition Explicit (IADE) method to solve the heat
conduction equation. International Journal of Computer Mathematics 47:
219-229.
Sulaiman, J., Othman, M., Yaacob, N. &
Hasan, M.K. 2006. Half Sweep Geometric Mean (HSGM) method using fourth-order
finite difference scheme for two-point boundary problems. Proceedings of the
First International Conference on Mathematics and Statistics, June 19-21,
2006, Bandung, Indonesia. pp. 25-33.
Ullah, M.A. 2015. Numerical integration and
a proposed rule. American Journal of Engineering Research (AJER) 4(9):
120-123.
Yuhe, R. & Zhang, B. & Qiao, H. 1999. A
simple Taylor-series expansion method for a class of second kind integral
equations. Journal of Computational and Applied Mathematics 110: 15-24. doi: 10.1016/S0377-0427(99)00192-2
Zhao, J. & Corless, R.M. 2006. Compact
finite difference method for integro-differential
equations. Applied Math. Comput. 177: 325-328.
DOI: 10.1016/j.amc.2005.11.007
*Corresponding author; email:
elayarajah@um.edu.my